
1 Using OpenMP for Intranode Parallelism – Tutorial Ov erview
Bronis R. de Supinski

Thanks to: Tim Mattson (Intel), Ruud van der Pas (Oracle),

Christian Terboven (RWTH Aachen University), Michael Klemm (Intel)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Using OpenMP for

Intranode Parallelism

Tutorial Overview

Bronis R. de Supinski

Paul Petersen

2

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

Assumed background…
• You know about parallel

architectures … multicore chips
have made them very common.

3

• You know about threads and
cache coherent shared address
spaces

• … and you know about the
POSIX Threads API (Pthreads)
for writing multithreaded
programs.

IntelTM CoreTM i7 processor (Nehalem)

Cache A Cache B

DRAM

Core 0 Core 1

#include <pthread.h>

void * thrd_func (void *arg){ // thread entry point

printf("[%d] Hello, world!\n", *(int*)arg);

}

int main (){

pthread_t tid[10]; // thread handle

int thrd_rank[10];

for (int i = 0; i < 10; ++i){

thrd_rank[i] = i;

pthread_create (&tid[i], 0, thrd_func,

(void*) &thrd_rank[i]);

}

}Third party names are the property of their owners.

A simple running example: Numerical Integration

∫
4.0

(1+x2) dx = π
0

1

∑ F(xi)∆x ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width ∆x and height F(xi) at
the middle of interval i.

4.0

2.0

1.0
X

0.0

PI Program: Serial version

#define NUMSTEPS 100000
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) NUMSTEPS;
x = 0.5 * step;
for (i=0;i<= NUMSTEPS; i++){

x+=step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;

}

#define NUMSTEPS 100000
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) NUMSTEPS;
x = 0.5 * step;
for (i=0;i<= NUMSTEPS; i++){

x+=step;
sum += 4.0/(1.0+x*x);

}
pi = step * sum;

}

PI Program: transform into a Pthreads program

Let’s turn this into a parallel program using the Pthreads API.

Package this
into a function

Assign loop
iterations to

threads

Variable to accumulate
thread results must be

shared

Assure safe update to sum …
correct for any thread schedule

Numerical Integration: PThreads (1 of 2)
Func(): the function run by the threads

#include <stdio.h>
#include <pthread.h>
#define NUMSTEPS 10000000
#define NUMTHREADS 4
double step = 0.0, Pi = 0.0; pthread_mutex_t gLock;
void *Func(void *pArg)
{

int myRank = *((int *)pArg);
double partialSum = 0.0, x;
for (int i = myRank; i < NUMSTEPS; i += NUMTHREADS)
{

x = (i + 0.5f) * step;
partialSum += 4.0f / (1.0f + x*x);

}
pthread_mutex_lock(&gLock);

Pi += partialSum * Step;
pthread_mutex_unlock(&gLock);

return 0;
}

Source: Michael Wrinn of Intel

Cyclic loop distribution … deal out
loop iterations as you would a deck of

cards

Put any code you want inbetweeen
the Mutex_lock and unlock. This is

called a Critical section … only one
thread at a time can execute this code

Global variables … on the heap

Numerical Integration: PThreads (2 of 2)
The main program … managing threads

int main()
{

pthread_t thrds[NUMTHREADS];
int tNum[NUMTHREADS], i;
pthread_mutex_init(&gLock, NULL);
Step = 1.0 / NUMSTEPS;
for (i = 0; i < NUMTHREADS; ++i)
{

tRank[i] = i;
pthread_create(&thrds[i], NULL,Func,(void)&tRank[i]);

}
for (i = 0; i < NUMTHREADS; ++i)
{
pthread_join(thrds[i], NULL);

}
pthread_mutex_destroy(&gLock);
printf("Computed value of Pi: %12.9f\n", Pi);
return 0;

}
Source: Michael Wrinn of Intel

Initialize the mutex variable

Create (fork) the threads …
passing each thread its rank

Post a join for each
thread … hence waiting
for all of them to finish

before proceeding

The fork -join pattern
• This is an instance of the well

known Fork join pattern :
1. Start as a serial program.
2. When work to do in parallel is

encountered, pack it into a
function.

3. Fork a number of threads to
execute the function.

4. When the functions have
completed, the threads join back
together.

5. Program continues as a serial
program.

9

• If this pattern with such “mechanical” transformations is so common, can’t
we come up with an easier, less intrusive way for this style of programming?

• Yes we can … and its called OpenMP

10

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

11

OpenMP * Overview:
http://www.openmp.org

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

�A set of compiler directives and library routines
for parallel application programmers

�Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

12

Original OpenMP Execution Model:

Fork-Join pattern:
�Master thread spawns a team of threads as needed.

�Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions
Master
Thread
in green

A Nested
Parallel
region

A Nested
Parallel
region

Sequential Parts

13

OpenMP core syntax

• Most of the constructs in OpenMP are compiler
directives.

#pragma omp construct [clause [clause]…]
–Example

#pragma omp parallel num_threads(4)
• Function prototypes and types in the file:

#include <omp.h>
• Most OpenMP constructs apply to a “structured

block”.
–Structured block: a block of one or more statements with

one point of entry at the top and one point of exit at the
bottom.
– It’s OK to have an exit() within the structured block.

OpenMP Basic Defs : Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,
Compiler

OpenMP library
Environment

variables

Application

End User

Shared Address Space

Proc 3Proc 2Proc 1 ProcN

15

OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.
–Threads communicate by sharing variables.

• Read-only sharing of data is encouraged:
–Synchronization is unnecessary on read-only data in a

parallel region
• Unintended sharing of data causes race conditions:

–Race condition: when the program’s outcome changes as
the threads are scheduled differently.

• To control race conditions:
–Use synchronization to protect data conflicts.

• Synchronization is expensive so:
–Change how data is accessed to minimize the need for

synchronization.

16

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

17

Original OpenMP Execution Model:

Fork-Join pattern:
�Master thread spawns a team of threads as needed.

�Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions
Master
Thread
in green

A Nested
Parallel
region

A Nested
Parallel
region

Sequential Parts

18

Thread Creation: Parallel Regions

• You create threads in OpenMP with the parallel construct.
• For example, to create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

printf(“all done\n”);

� Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Thread Creation: Parallel Regions

• Each thread executes
the same code
redundantly.

double A[1000];
#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is
shared
between all
threads.

A single
copy of A is
shared
between all
threads.

Threads wait here for all threads to finish
before proceeding (i.e., a barrier)
Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

OpenMP: What the compiler does

#pragma omp parallel num_threads(4)

{

foobar ();

}

void thunk ()

{

foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)

pthread_create (

&tid[i],0,thunk, 0);

thunk();

for (int i = 1; i < 4; ++i)

pthread_join (tid[i]);

� All known OpenMP implementations
use a thread pool so full cost of thread
creation and destruction is not incurred
for reach parallel region.

� Only three threads are created because
the last parallel section will be invoked
from the parent thread.

Linux and OS X gcc -fopenmp

PGI Linux pgcc -mp

Intel windows icl /Qopenmp

Intel Linux and OS X icpc –openmp

Input Output (approximate)

2121

Exercise

• Create a parallel version of the pi program using a parallel
construct.

• Pay close attention to shared versus private variables.
• In addition to a parallel construct, you will need the runtime

library routines
– int omp_get_num_threads();
–void omp_set_num_threads();
– int omp_get_thread_num();

–double omp_get_wtime();
Time in seconds since a
fixed point in the past

Thread ID or rank

Number of threads in the team

22

Example: Serial PI Program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

23

#include <#include <#include <#include <omp.homp.homp.homp.h>>>>
static long num_steps = 100000; double step;
#define NUM_THREADS 2#define NUM_THREADS 2#define NUM_THREADS 2#define NUM_THREADS 2
void main (…
{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double… num_steps;
omp_set_num_threadsomp_set_num_threadsomp_set_num_threadsomp_set_num_threads(NUM_THREADS…;(NUM_THREADS…;(NUM_THREADS…;(NUM_THREADS…;

#pragma #pragma #pragma #pragma ompompompomp parallelparallelparallelparallel
{

int i, id,nthrds;
double x;
id = id = id = id = omp_get_thread_numomp_get_thread_numomp_get_thread_numomp_get_thread_num(…;(…;(…;(…;
nthrdsnthrdsnthrdsnthrds = = = = omp_get_num_threadsomp_get_num_threadsomp_get_num_threadsomp_get_num_threads(…;(…;(…;(…;
if (id == 0… if (id == 0… if (id == 0… if (id == 0… nthreadsnthreadsnthreadsnthreads = = = = nthrdsnthrdsnthrdsnthrds;;;;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds… {

x = (i+0.5…*step;
sum[id] += 4.0/(1.0+x*x…;

}
}

for(i=0, pi=0.0;i<nthreads;i++…pi += sum[i] * step;
}

Example: A simple Parallel pi program
Promote scalar to an
array dimensioned by
number of threads to
avoid race condition.

This is a common
trick in SPMD
programs to create
a cyclic distribution
of loop iterations

Only one thread should copy
the number of threads to the
global value to make sure
multiple threads writing to the
same address don’t conflict.

24

SPMD: Single Program Mulitple Data

� Run the same program on P processing elements where P
can be arbitrarily large.

� Use the rank … an ID ranging from 0 to (P-1) … to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is
probably the most commonly used pattern in the history of

parallel programming.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is
probably the most commonly used pattern in the history of

parallel programming.

Results*

25

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

26

Why such poor scaling? False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads
… This is called “false sharing” .

• If you promote scalars to an array to support creation of an SPMD program,
the array elements are contiguous in memory and hence share cache lines
… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and D RAM

27

#include <omp.h>
static long num_steps = 100000; double step;
#define PAD 8 // assume 64 byte L1 cache line size#define PAD 8 // assume 64 byte L1 cache line size#define PAD 8 // assume 64 byte L1 cache line size#define PAD 8 // assume 64 byte L1 cache line size
#define NUM_THREADS 2
void main (…
{ int i, nthreads; double pi, sum[NUM_THREADSsum[NUM_THREADSsum[NUM_THREADSsum[NUM_THREADS][PAD];][PAD];][PAD];][PAD];

step = 1.0/(double… num_steps;
omp_set_num_threads(NUM_THREADS…;

#pragma omp parallel
{ int i, id,nthrds;

double x;
id = omp_get_thread_num(…;
nthrds = omp_get_num_threads(…;
if (id == 0… nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds… {

x = (i+0.5…*step;
sum[idsum[idsum[idsum[id][0]][0]][0]][0] += 4.0/(1.0+x*x…;

}
}

for(i=0, pi=0.0;i<nthreads;i++…pi += sum[sum[sum[sum[iiii][0]][0]][0]][0] * step;
}

Example: eliminate False sharing by padding the sum array

Pad the array
so each sum
value is in a
different
cache line

Results*: pi program padded accumulator

28

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

29

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

30

Discussed
later

Synchronization

• High level synchronization:
– critical
– atomic
– barrier
– ordered

• Low level synchronization
– flush
– locks (both simple and nested)

Synchronization is used
to impose order
constraints and to
protect access to shared
data

31

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds){

B = big_job(i);

#pragma omp critical
res += consume (B);

}
}

Threads wait
their turn – only
one at a time
calls consume()

32

Synchronization: Atomic (basic form)
• Atomic provides mutual exclusion but only applies to the

update of a memory location (the update of X in the following
example)

#pragma omp parallel

{
double tmp, B;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

}

The statement inside the
atomic must be one of the
following forms:

• x binop= expr
• x = x binop expr
• x = expr binop x
• x++
• ++x
• x--
• --x

X is an lvalue of scalar type
and binop is a non-overloaded
built in operator.

33

Synchronization: Barrier

• Barrier : Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
A[id] = big_calc4(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the end of a
for worksharing construct

no implicit barrier
due to nowait

Preview of worksharing
construct… more later

34

Exercise

• Earlier, we used an array to create space for each thread
to store its partial sum.

• If array elements happen to share a cache line, this leads
to false sharing.

– Non-shared data in the same cache line so each update invalidates the
cache line … in essence “sloshing independent data” back and forth
between threads.

• Modify your “pi program” from before to avoid false sharing
due to the sum array using a critical section.

35

#include <#include <#include <#include <omp.homp.homp.homp.h>>>>
static long num_steps = 100000; double step;
#define NUM_THREADS 2#define NUM_THREADS 2#define NUM_THREADS 2#define NUM_THREADS 2
void main (…
{ double pi; step = 1.0/(double… num_steps;

omp_set_num_threadsomp_set_num_threadsomp_set_num_threadsomp_set_num_threads(NUM_THREADS…;(NUM_THREADS…;(NUM_THREADS…;(NUM_THREADS…;
####pragma pragma pragma pragma ompompompomp parallelparallelparallelparallel
{

int i, id, nthrds; double x, sum;
id id id id = = = = omp_get_thread_numomp_get_thread_numomp_get_thread_numomp_get_thread_num(…;(…;(…;(…;
nthrdsnthrdsnthrdsnthrds = = = = omp_get_num_threadsomp_get_num_threadsomp_get_num_threadsomp_get_num_threads(…;(…;(…;(…;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds…{

x = (i+0.5…*step;
sum += 4.0/(1.0+x*x…;

}
####pragma pragma pragma pragma ompompompomp criticalcriticalcriticalcritical

pi += sum * step;
}

}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region
so updates don’t conflict

No array, so
no false
sharing.

No array, so
no false
sharing.

No array, so
no false
sharing.

Create a scalar local to
each thread to
accumulate partial
sums.

Results*: pi program critical section

36

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

SPMD
critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

37

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

• A parallel construct by itself creates an SPMD or “Single
Program Multiple Data” program … i.e., each thread
redundantly executes the same code.

• How do you split up pathways through the code between
threads within a team?
– This is called worksharing
– Loop construct
– Sections/section constructs
– Single construct
– Task construct

38

Discussed later

SPMD vs. worksharing

39

The loop worksharing Constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma #pragma #pragma #pragma ompompompomp parallelparallelparallelparallel

{
#pragma #pragma #pragma #pragma ompompompomp for for for for

for (i=0;i<N;i++…{
a[i] = a[i] + b[i];

}
}

Loop construct
name:

ವC/C++: for

ವFortran: do

The variable i is made “private” to each
thread by default. You could do this
explicitly with a “private(i)” clause

40

Loop worksharing Constructs
A motivating example for schedule(static)

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

41

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

42

Working with loops

• Basic approach
– Find compute intensive loops
– Make the loop iterations independent … so they can safely execute in

any order without loop-carried dependencies
– Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

}
Remove loop
carried
dependence

Note: loop index
“i” is private by
default

43

Reduction

• We are combining values into a single accumulation variable
(ave) … there is a true dependence between loop iterations
that can’t be trivially removed

• This is a very common situation … it is called a “reduction”.
• Support for reduction operations is included in most parallel

programming environments.

double ave=0.0, A[MAX]; int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

� How do we handle this case?

44

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending

on the “op” (e.g., 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with

the original global value.

• The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

45

OpenMP: Reduction operands/initial-values
• Many different associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0
* 1
- 0

Min Largest number
Max Smallest number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

46

Exercise: Pi with loops

• Go back to the serial pi program and parallelize it with a
loop construct

• Your goal is to minimize the number of changes made to
the serial program.

47

Example: Pi with a loop and a reduction

#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel
{

double x;
#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
}

pi = step * sum;
}

Results*: pi with a loop and a reduction

48

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD
1st

SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

49

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

50

Master Construct

• The master construct denotes a structured block that is only
executed by the master thread.

• The other threads just skip it (no synchronization is implied).

#pragma omp parallel
{

do_many_things();
#pragma omp master

{ exchange_boundaries(); }
#pragma omp barrier

do_many_other_things();
}

51

Single worksharing Construct

• The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

52

Synchronization: ordered

• The ordered region executes in the sequential order.

#pragma omp parallel private (tmp)
#pragma omp for ordered reduction(+:res)

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}

53

Synchronization: Lock routines

• Simple Lock routines:
– A simple lock is available if it is unset.

–omp_init_lock (), omp_set_lock (),
omp_unset_lock (), omp_test_lock (),
omp_destroy_lock ()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned by the

thread executing the nested lock function

–omp_init_nest_lock (), omp_set_nest_lock (),
omp_unset_nest_lock (),
omp_test_nest_lock (),
omp_destroy_nest_lock ()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

A lock implies a
memory fence (a
“flush”… of all
thread visible
variables

54

Synchronization: Simple locks
• Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for
for(i=0;i<NBUCKETS; i++){

omp_init_lock(& hist_locks[i]); hist[i] = 0;
}
#pragma omp parallel for
for(i=0;i<NVALS;i++){

ival = (int) sample(arr[i]);
omp_set_lock(& hist_locks[ival]);

hist[ival]++;
omp_unset_lock(& hist_locks[ival]);

}

for(i=0;i<NBUCKETS; i++)
omp_destroy_lock(& hist_locks[i]);

Free-up storage when done.Free-up storage when done.

One lock per element of histOne lock per element of hist

Enforce mutual
exclusion on
update to hist array

Enforce mutual
exclusion on
update to hist array

55

Runtime Library routines

• Runtime environment routines:
–Modify/Check the number of threads

–omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num (), omp_get_max_threads()

– Are we in an active parallel region?

–omp_in_parallel()
– Do you want the system to dynamically vary the number of threads

from one parallel construct to another?

–omp_set_dynamic, omp_get_dynamic();
– How many processors in the system?

–omp_num_procs()

ಹplus a few less commonly used routines.

56

Runtime Library routines

• To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic adjustment of the
number of threads, (2) set the number of threads, then (3) save the
number you got.

#include <omp.h>
void main()
{ int num_threads;

omp_set_dynamic(0);
omp_set_num_threads(omp_num_procs());

#pragma omp parallel
{ int id=omp_get_thread_num ();

#pragma omp single
num_threads = omp_get_num_threads();

do_lots_of_stuff(id);
}

}

Protect this op since Memory
stores are not atomic
Protect this op since Memory
stores are not atomic
Protect this op since Memory
stores are not atomic

Request as many threads as
you have processors.
Request as many threads as
you have processors.
Request as many threads as
you have processors.

Disable dynamic adjustment of the
number of threads.
Disable dynamic adjustment of the
number of threads.
Disable dynamic adjustment of the
number of threads.

Even in this case, the system may give you fewer threads
than requested. If the precise # of threads matters, test for
it and respond accordingly.

57

Environment Variables
• Set the default number of threads to use.

–OMP_NUM_THREADS int_literal
• OpenMP added an environment variable to control the size of

child threads’ stack
–OMP_STACKSIZE

• Also added an environment variable to hint to runtime how to
treat idle threads

–OMP_WAIT_POLICY
– ACTIVE keep threads alive at barriers/locks
– PASSIVE try to release processor at barriers/lock s

• Control how “omp for schedule(RUNTIME)” loop iterations are
scheduled.

–OMP_SCHEDULE “schedule[, chunk_size]”

58

Outline

• Threaded Programming
• Introduction to OpenMP
• Creating Threads
• Synchronization
• Parallel Loops
• Synchronize single masters and stuff
• Data environment

59

Data environment:
Default storage attributes

• Shared memory programming model:
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

60

double A[10];
int main() {
int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

A, index and count are
shared by all threads.

temp is local to each
thread

61

Data sharing:
Changing storage attributes

• One can selectively change storage attributes for constructs
using the following clauses*
– SHARED
– PRIVATE
– FIRSTPRIVATE

• The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with:
– LASTPRIVATE

• The default attributes can be overridden with:
– DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page apply
to the OpenMP construct NOT to
the entire region.

*All data clauses apply to parallel constructs and worksharing constructs except
“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE… is Fortran only

62

Data Sharing: Private Clause

void wrong() {
int tmp = 0;

#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.
– The value of the private copies is uninitialized
– The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is undefined
(may be 0) here

void wrong() {
int tmp = 0;
{

int tmp;
for (int j = 0; j < 1000; ++j)

tmp += j;
}
printf(“%d\n”, tmp);

}

Firstprivate Clause

• Variables initialized from shared variable

• C++ objects are copy-constructed

63

incr = 0 ;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr ++;
A[i] = incr ;

}

incr = 0 ;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr ++;
A[i] = incr ;

}
Each thread gets its own copy
of incr with an initial value of 0

Lastprivate Clause

• Variables update shared variable using value from last
iteration

• C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)
{

double x; int i;
#pragma omp parallel for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}

void sq2(int n, double *lastterm)
{

double x; int i;
#pragma omp parallel for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}

64

“x” has the value it held
for the “last sequential”
iteration (i.e., for i=(n-1))

65

Example: Pi program … minimal changes

#include <omp.h>
static long num_steps = 100000; double step;

void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Note: we created a
parallel program without
changing any executable
code and by adding 2
simple lines of text!

i private by
default
i private by
default

For good OpenMP
implementations,
reduction is more
scalable than critical.

For good OpenMP
implementations,
reduction is more
scalable than critical.

66

Conclusion
• OpenMP is one of the simplest APIs available for

programming shared memory machines.
• This simplicity means you can focus on mastering the key design

patterns and applying them to your own problems

• We covered the following essential parallel programming
design patterns:
– Fork join
– SPMD
– Loop level parallelism

• Next steps?
– Let’s consider some of the more advanced features of OpenMP.
– OpenMP is in active evolution to target the latest machine

architectures.
– Start writing parallel code … you can only learn this stuff by writing

lots of code.

